US3122777A - Machine for cleaning shrimp - Google Patents

Machine for cleaning shrimp Download PDF

Info

Publication number
US3122777A
US3122777A US41304A US4130460A US3122777A US 3122777 A US3122777 A US 3122777A US 41304 A US41304 A US 41304A US 4130460 A US4130460 A US 4130460A US 3122777 A US3122777 A US 3122777A
Authority
US
United States
Prior art keywords
shrimp
tail
gripping
shell
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US41304A
Inventor
Jonsson Gregor
Original Assignee
Jonsson Gregor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jonsson Gregor filed Critical Jonsson Gregor
Priority to US41304A priority Critical patent/US3122777A/en
Priority claimed from US258095A external-priority patent/US3159871A/en
Application granted granted Critical
Publication of US3122777A publication Critical patent/US3122777A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C29/00Processing shellfish or bivalves, e.g. oysters, lobsters; Devices therefor, e.g. claw locks, claw crushers, grading devices; Processing lines
    • A22C29/02Processing shrimps, lobsters or the like ; Methods or machines for the shelling of shellfish
    • A22C29/024Opening, shelling or peeling shellfish
    • A22C29/026Mechanically peeling and shelling shrimps, prawns or other soft-shelled crustaceans
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C29/00Processing shellfish or bivalves, e.g. oysters, lobsters; Devices therefor, e.g. claw locks, claw crushers, grading devices; Processing lines
    • A22C29/02Processing shrimps, lobsters or the like ; Methods or machines for the shelling of shellfish
    • A22C29/021Cleaning operations on shellfish, e.g. evisceration, brushing
    • A22C29/022Deveining shellfish

Description

March 3, 1964 G. JONSSON MACHINE FOR CLEANING SHRIMP l4 Sheets-Sheet 1 Filed July '7, 1960 IN VENTOR. 'flggai 1 20mm BY March 3, 1964 JONSSQN MACHINE FOR CLEANING SHRIMP 6. Maw
Flieijij/y 7 1960 March 3, 1964 G. JONSSON MACHINE FOR CLEANING SHRIMP l4 Sheets-Sheet 5 Filed July 7, 1960 INVENTOR. Gfizgar .fo mism March 3, 1964 Filed July 7, 1960 G. JONSSON 3,122,777
MACHINE FOR CLEANING SHRIMP 14 Sheets-Sheet 4 'Hmw INVENTOR.
69 5 07 1 jawawz March 3, 1964 G. JONSSON MACHINE FOR CLEANING SHRIMP l4 Sheets-Sheet 5 ij 6.,
Filed July 7, 1960 INVENTOR. 6912907 Jomisom March 3, 1964 e. JONSSON 7 MACHINE FOR CLEANING SHRIMP Filed July 7, 1960 14 Sheets-Sheet 6 I N VEN TOR. Gflggofl 70mm? March 3, 1964 G. JONSSON MACHINE FOR CLEANING SHRIMP l4 Sheets-Sheet 7 Filed y 7, 1960 ZZZ 7 Ill March 3, 1964 G, JONSSON 3,122,777
MACHINE FOR CLEANING SHRIMP Filed July 7, 1960 14 Sheets-Sheet a IOOOOOOOOOOOO INVENTOR.
Ggw Maia G. JONSSON MACHINE FOR CLEANING SHRIMP March 3, 1964 14 Sheets-Sheet 9 Filed July 7, 1960 myEyToR.
@gar Jaws 072 March 3, 1964 e JONSSON MACHINE FOR CLEANING SHRIMP 14 Sheets-Sheet 10 Filed July 7, 1960 m HE March 3, 1964 G. JONSSON MACHINE FOR CLEANING SHRIMP INVENTOR. 71 20/369073 l4 Sheets-Sheet ll Filed July '7, 1960 March 3, 1964 G. JONSSON 3,122,777
' MACHINE FOR CLEANING SHRIMP INVENTOR. 1/5 .165 55 6/ 07 jaw/a March 3, 1964 G. JONSSON MACHINE FOR CLEANING SHRIMP l4 Sheets-Sheet 13 Filed July 7, 1960 IN VEN TOR. @07 t 70m March 3, 1964 G. JONSSON MACHINE FOR CLEANING SHRIMP l4 Sheets-Sheet 14 Filed July 7, 1960 2 n x x 36 X X X M wafi j z z wa United States Patent 3,122,777 h'iACHiNE FGR QLEANIIJG SHIRE? Gregor .sonsson, 9553' East West Leigh Road, Latte Forest, Filed duly 7, 1960, Ser. No. 415% 27 (Q1. 17-2) The present invention relates to the automatic cleaning of shrimp.
One object of the invention is to provide a shrimp cleaning machine having a new and improved construction which operates with great eiliciency and dependability to completely remove the sand vein of shrimp and to thoroughly clean the area from which the sand vein is removed.
A further object is to provide a shrimp cleaning machine, as recited in the preceding object, which is capable of slitting the bodies of individual shrirnp longitudinally to any desired depth as an incident to effecting a thorough cleaning of the areas of the shrimp bodies from which the sand veins have been removed.
Another object is to provide a new and improved shrimp cleaning machine which operates automatically to remove the sand vein from shrimp and separate the main body or meat of the shrimp from the surrounding shell while at the same time maintaining the tail of the shrimp intact and attached to the meat of the shrimp.
Another object is to provide, in a shrimp cleaning machine of the character recited novel and fully automatic means for separating the main body portion of a shrimp shell from the tail of the shrimp and leaving the latter intact and securely attached to the meat of the shrimp.
A more specific object is to provide for use in separating the body and tail portions of a shrimp shell, a novel and fully automatic means of shattering a shrimp shell at the juncture of the main body of the shell with the tail of the shrirnp. A related object is to provide means for shattering a shrimp shell as recited without crushing the meat within the shattered portion of the shell.
A further object is to provide an automatic shrimp cleaning machine of the character recited in which the removal of the main portion of the shell of individual shrimp from the body and tail of the shrimp is faci itated by new and improved shell shattering means which will operate efficiently and dependably without becoming clogged.
Another object is to provide an automatic machine which will clean shrimp in the manner recited and leave on each shrimp an intact tail of the desired length.
Another object is to provide in this machine a simple and extremely effective means of adjusting the length of the intact tail left on each shn'mp.
Another object is to provide a continuous process shrimp cleaning machine having a new and improved construction which provides for extremely efhcient and safe manual loading of a continuous succession of shrimp into the machine while at the same time radially simplifying the structure which facilitates manual loading of the shrimp.
Another object is to provide a shrimp cleaning machine which will slip the body section of a shrimp shell longitudinally oi the meat of the shrimp past the intact tail on the shrimp while at the same time effectively avoiding the application to the shrimp tail of forces which would separate it from the meat of the shrimp.
fimother object is to provide a shrimp cleaning machine which operates automatically to slit the main body of a deveined shrimp longitudinally while leaving the tail on the shrimp intact.
An additional object is to provide a shrimp cleaning machine, as recited, with improved means for separating "ice 2 a deveined shrimp body from. its longitudinally moving shell.
Still another object of the invention is to provide an improved shrimp cleaning machine of the character set forth in the above objects which is very reliable in operation and free of service problems.
Other objects and advantages will become apparent from the following description having reference to the drawings, in which:
FIG. 1 is a :front elevation view of the improved machine in which certain internal components are shown in dotted lines;
FIG. 2 is an end elevation of the machine taken from the left with reference to FIG. 1 some external parts being broken away for clearness in illustration and certain internal components being shown in dotted lines;
FIG. 3 is a perspective view illustrating the manner in which fundamental components of the machine are arranged to clean shrimp in accordance with the method of this invention;
FIG. 3a is a fragmentary sectional view on an enlarged scale taken along the line 3a-3a of FIG. 3;
FIG. 3b is a fragmentary sectional View on an enlarged scale taken along the line 3b3b of FIG. 3;
FIG. 30 is a fragmentary sectional view on an enlarged scale taken along the line 3c-3c of FIG. 3;
FIG. 3d is a fragmentary sectional view on an enlarged scale taken along the line 3d3d of FIG. 3;
FIG. 3e is a fragmentary sectional view on an enlarged scale taken along the line 3e3e of FIG. 3;
FIG. 3 f is a fragmentary sectional view on an enlarged scale showing the same elements appearing in the lower portion of FIG. 3 at a later stage in its operating cycle;
FIG. 3g is a view similar to FIG. 3 f showing the structure of FIG. 3 in a still later stage of its operational cycle;
FIG. 3h is a perspective view of a butterfly shrimp cleaned by the machine in accordance with the invention;
FIG. 4 is an enlarged scale vertical sectional View of the machine taken along the line 44 of FIG. 1;
FIG. 5 is an enlarged scale, horizontal sectional view of the machine taken along the line 5-5 of FIG. 1;
FIG. 6 is an enlarged scale vertical sectional view of the machine taken along the line 6-6 of FIG. 2;
FIG. 7 is a vertical sectional view taken along the line 7-7 of FIG. 6;
FIG. 8 is a fragmentary perspective view showing the shrimp spreading and slitting mechanism;
FIG. 9 is a fragmentary sectional View on an enlarged scale taken along the line 99 in FIG. 6;
FIG. 10 is a vertical sectional view taken along the line 1ti-1ll of FIG. 4;
FIG. 11 is a fragmentary perspective View of the shrimp impaling mechanism;
FIG. 12 is a fragmentary sectional view of the shrimp loading and conveyor mechanism taken along the line 12-12 of FIG. 5;
FIG. 13 is a perspective view of the shrimp loading device;
FIG. 14 is a fragmentary sectional view taken along the line 1d14 of FIG. 12;
FIG. 15 is a perspective view of a shrimp holder unit, of the machine;
FIG. 16 is a longitudinal sectional view of a holder unit and coacting cams taken with reference to line 16ld of FIG. 15;
FIG. 16a is a detail view on an enlarged scale of shrimp tail deflecting structure shown in FIG. 16;
FIG. 17 is a transverse sectional View of a holder unit taken along the line 1717 of FIG. 16;
FIG. 18 is a sectional view taken along the line 18-18 of FIG. 16;
FIG. 19 is a perspective view showing shrimp engaging elements of a holder unit;
FIG. 20 is a sectional view of the conveyor drive taken along the line 29-20 of FIG. 4; 7
FIG; 21 is a sectional view taken with reference to the line 2121 of FIG. 20;
FIG. 22 is a perspective view showing the shell ripping and deveining mechanism and adjacent cam act ators for the shell shattering jaws;
FIG. 23 is a fragmentary side view showing the position of the shell ripping and deveining cutter as it is lifted over the tail of a shrimp;
FIG. 24 is a view similar to FIG. 23 but showing the cutter ripping the shrimp shell and removing a sand vein; FIG. 25 is a perspective view showing the shrimp spreading roller and slitting cutter as it is lifted over the tail of a shrimp;
FIG. 26 is a view similar to FIG. 25 but showing the roller and the cutter spreading and slitting the body of a shrimp;
FIG. 27 is a fragmentary sectional view generally similar to FIG. 7 but simplified and sectioned somewhat differently to further illustrate coacting parts;
FIG. 28 is a fragmentary sectional view taken along 7 the line 2828 of FIG. 27;
FIG. 29 is a fragmentary plan view taken with reference to line 29-49 of FIG. 3g;
FIG. 30 is a fragmentary sectional view on an enlarged scale taken with reference to the line 39-30 of FIGURE 7 and illustrating the action of the shrimp spreader when the shrimp slitting blade has been removed to eliminate slitting of the shrimp body;
I FIG. 31 is a perspective view of the shrimp spreader operating mechanism;
FIG. 32 is a fragmentary perspective view illustrating shrimp tail supporting components of a typical shrimp holding unit;
FIG. 33 is an enlarged fragmentary sectional View taken along the line 3333 of FIG. 18 and showing the operating face of a shrimp shell shattering jaw;
FIG. 34 is a fragmentary sectional view of a shell shattering jaw taken along the line 3434 of FIG. 33;
FIG. 35 is an enlarged fragmentary sectional View taken with reference to the line 3535 of FIG. 3b and showing two opposed self shattering jaws fully engaged with a shrimp;
FIG. 36 is a perspective view taken generally with reference to the line 36-36 of FIG. 7 and illustrating the relationship of debris raking structure to a coacting shrimp being cleaned;
FIG. 37 is a fragmentary view on an enlarged scale taken with reference to the line 3737 of FIG. 36;
3 FIG. 38 is a fragmentary sectional view on a greater enlarged scale taken with reference to the line 3838 of FIG. 37;
FIG. 39 is a side view of a typical shrimp to be cleaned bythe machine;
FIG. 40 is a fragmentary view illustrating the manner in which a shrimp body and tail are pierced by holding tines at the shell removing station in the machine;
.FIG. 41 is a fragmentary perspective view of the machine illustrating a modified construction for facilitating simplified manual loading of shrimp into the machine for cleaning;
FIG. 42 is a sectional view on an enlarged scale taken along the line 4242 on FIG. 41;
FIG. 43 is a fragmentary sectional view taken along the line 43-43 of FIG. 42; and
FIG. 44 is a fragmentary perspective view showing trays of the conveyor illustrated in FIG. 43.
Referring to the drawings in greater detail, the method by which shrimp are cleaned in accordance with the present invention can be visualized with reference to FIG. 3 which illustrates the progression of individual shrimp 46 through a series of spaced stations 42, 44, 46, 48, 5G and '4 52 where a series of operations are performed on a shrimp to clean and prepare the shrimp in the manner desired for subsequent use.
In the first station 42 a shrimp 40 is clamped by its tail and carried to the next station 44 where the longitudinal underside of the shrimp is firmly clamped and squeezed together somewhat to hold the shrimp and tighten the main body of the shrimp shell 54, FIG. 3a, about the meat 56 of the shrimp.
From the station 44 a shrimp moves on to the station 46 where a section 5 3 of the shrimp shell 54, FIG. 3b, is shattered in preparation for subsequent separation of the main body of the shrimp shell from the tail 58 of the shrimp, FIG. 3h, which is left intact and attached to the meat 56 of the shrimp.
Each shrimp passes from the shell shattering station 46 on to the next station 48 Where the shrimp shell 54 forward of the tail 58 on the shrimp, which is left intact, is ripped open longitudinally along the back of the shrimp and the sand vein 60 dug out, F-IG. 3c.
From the station 48, each shrimp passes on to the next station 50 where the body of the shrimp previously ripped opened in the station 43 is spread apart and raked clean of debris to assure thorough removal of all material previously in the sand vein. If desired, the meat or body of the shrimp ahead of the tail section 53 is slit open longitudinally in the station 59 from the dorsal side of the shrimp to a depth far below the situs of the removed sand vein, as illustrated in FIG. 3d.
At the next station 52, the body portion of the split shrimp shell 54 forwardly of the tail 58 is separated from the intact tail 58 and moved longitudinally off the longitudinally slit shrimp body 56 past the tail 58. The removed shell is discarded. FIGURE 3h illustrates a cleaned butterfly shrimp 61 comprising a longitudinally slit shrimp body 56 with the tail 58.
Shrimp cleaned and prepared in this manner are ordinarily frozen for subsequent use.
Shrimp are automatically cleaned and prepared in the manner described by the improved automatic shrimp cleaning machine illustrated in the drawings.
Again having reference to FIG. 3, a succession of shrimp 40 are supplied to the tail clamping zone or station 42 by conveyor means 62 to be described presently in greater detail. Each shrimp 4% is picked up at the tail clamping station 42 and carried through the successive operating zones 44 to 52 by a shrimp holding unit 64.
As shown, an annular array of six shrimp holding units 64 of identical construction are provided in the instant machine and supported in circumferentially spaced relation to each other by a rotor 66 mounted on the frame 67 of the machine as shown in FIGS. 4 and 10.
Shrimp Holding Units The construction of an individual shrimp holding unit 64 is illustrated in FIGS. 15 to 19, and 32. As shown, each unit comprises a central support or frame 68 formed as a unitary casting and having a support flange 7t extending radially inward and supported on a pair of axially projecting bosses 72, projecting axially from the rotor 66 as shown in FIG. 18. The flange 74 is connected to the extreme ends of the bosses 72 by bolts 74 extending through the bosses 72.
As shown in FIGS. 16 and 17, the central support 68 of each holding unit 64 is shaped at its radially outward extremity to form a flange '76 defining an arcuate base or floor surface 7 8 of substantial width and having a length measured circumferentially equal to the length of the main body of the largest shrimp.
A pair of opposed tail clamping jaws 8! are pivotally mounted at the leading end of each holding unit 64 by means of a forwardly projecting pivotal support shaft 82 mounted in the center of the support 68, FIGS. 15 and 16. The jaws project radially outward from the pivot 82 and define opposing tail clamping elements 84 located slightly forward of the leading edge of the floor surface 78 and a short distance radially outward from this surface as shown. A spring 86 coiled about the pivot 82 engages both jaws 8i) to bias the tail clamping elements 84 toward engagement with each other.
A pair of short holding spikes 85 mounted in one of the clamping elements 84 in opposing relation to recesses 87 in the other clamping element provides added assurance against slipping of a shrimp tail from between the clamping elements.
F or the purpose of swinging the tail clamping elements 84 away from each other in timed relation to rotary movement of the holding unit 64, a pair of cam followers 38 are arhxed to the respective jaws to project radially inward in spaced relation to each other to coact with annular jaw controlling cams 5%), FIGS. 7, l0, and 16, to be described presently.
A pair of shrimp body clamping jaws 92 are swingably mounted on a second pivot shaft 2 4- on the support 68. A pair of arcuate shell gripping flanges dz; formed on the radially outward edges of the respective jaws 92 oppose each other in adjacent outwardly spaced relation to the base surface '73, as shown. A spring 109 coiled about the 9d engage the jaws 92 to urge the gripping flanges 96 toward each other.
As will presently appear, the two main gripping eleents 96 operate to clamp against the relatively soft uner ide or belly of a shrimp 4%? which is placed firmly gainst the base surface 78, as illustrated in phantom in 18. A firm grip on the lower portion of the shrimp ell and the short appendages on the underside of re shell is obtained not only by the clamping force of he elements 96, but also by a series of circumfer'entially spaced holding spikes 162 aflixed in the extreme marginal edge of each clamping element 96, as shown in FIGS. 15 1?, for en agement with opposite sides of a shrimp body.
Even though the spikes 1192 project directly toward the opposing jaws $5, they are prevented from engaging the opposing jaws by adjustable stops 164 on the jaws which engage abutment on the support 68 to limit movement of the jaws toward each other.
For the purpose of automatically opening and closing the main clamping jaws 1% in timed relation to rotary movement of a clamping unit 64 through its closed path, a pair of cam followers 112 are aflixed to the respective jaws and extend radially inward for coaction with an opposed pair of annular control cams 114, FEGS. 7 and 16, to be escribed presently in greater detail.
It is particularly noteworthy that the leading ends of the main gripping flanges 96 stop circumferentially short or" the trailing edges of the tail clamping elements 84-, thus pro'vid g, FIG. 19, a substantial circumferential space 116 between the shrimp gripping portions of the elements and 5 6.
This space 116 provides clearance for mounting on the leading end of the frame flange 76 a tail deflecting element shaped and mounted on the flange 76, as shown 15, 16, 16a, and 19.
As will presently appear, the tail deflecting element 118 serves an important function in deflecting the intact tail 58 of a shrimp radi y outward to clear the main body of the shrimp shell as it is slipped longitudinally ed the meat of the shrimp and past the shrimp tail 5% in the operating station or zone 52, HQ. 3.
Preferably the tail detector 118 is formed as an integral part of a small casting 119, FIG. 32, which is secured by screws 123 to a flange 121 on the support 68, which projects forwardly of the floor surface 7%. Situated in space 116, between the trailing edges of the tail jaws 84 and the forward end of the shrimp sip-port flange '76, the tail deflector 113 projects radially outward beyond the floor surface 78 and is shaped to define an arcuate shrimp support and deflecting saddle surface P1. As viewed in transverse radial section, the
n o a P tr saddle surface 121 has a concave shape as illustrated in FIGS. 19 and 32. As viewed in a circumferential section, i.e., along a plane perpendicular to the axis of the rotor, the saddle surface 121 has a convex arcuate shape which rises radially outward substantially from the forward end of the deflector to the rear end of the deflector.
At the forward end of the deflector 115, the bottom or trough of the saddle surface 121 is disposed a substantial distance rearwardly of the tail clamping jaws 84 and is located a slight distance radially inward of the radially outward extremity of the tail clamping jaws. From this forward end, the trough of the saddle surface 121 rises progressively to the rear end of the deflector, Where the saddle surface is only slightly above the opposed shrimp gripping spikes 192, in the main jaws 9d; The forward edges of the opposed jaws 96 are tapered radially to lie radially inward of the trailing end of the tail deflector 118.
It has been found that a tail deflecting element 11% approximately three-eighths of an inch wide and ris ng over-all approximately one-quarter inch from the base surface 73 while extending circumferentially approximately one-half inch provides a very satisfactory ta l defleeting action when the saddle surface lies approximately three-sixteenths of an inch radially outward of the base surface 78. The leading end of the deflector 118, in the preferred construction, terminates approximately oneeighth of an inch circumferentially short of the trailing ends of the tail clamps 84.
To prevent the tail of the shrimp from extending too far radially inward with respect to the tail clamping jaws $4, tail positioning protuberance 124 is formed on the casting 11?, FIG. 32, to project forwardly in underlying spaced relation to the jaws 84, as shown in FIG. 16.
Each shrimp holding unit 64 carries a pair of opposed tail shattering or rupturing jaws 12s for shattering or rupturing a section of the shrimp shell 54 just ahead (with respect to the shrimp) of the shrimp tail 53, as the shrimp is carried through the shell shattering station 46 previously described in relation to P16. 3.
As best shown in FIGS. 5 and 17, the inner ends of the shattering jaws 126 are supported by pivots 128 on the radially inward marginal edges of the main clamping jaws 92 near the leading ends of the main jaws.
The two shattering jaws 126 are biased away from each other by coiled springs 12%, supported Within the respective main jaws 92 to act outwardly against the respective shattering jaws, as shown in FIGS. 17 and 18. Outward movement of the jaws 12s is limited by a pair of stop plates 130 fixed to the main jaws 92 in bridging relation to intermediate portions of the shattering jaws, as shown in FIGS. 15 and 18.
Movement of the tail shattering jaws 126 toward each other is effected by two bulbous sheet metal cam followers 132 fixed to the respective jaws, as shown in FIGS. 15 and 17, to be carried by the latter between a pair of opposed cam actuators 134, 5-168. 7 and 22, as the holding unit 64 passes through the tail shattering station 46, FIG. 3.
As shown in FY88. 15 and 18, the radially projecting free ends of the shattering jaws 126 are turned towar each other across the leading ends of the main jaws 92. The opposing ends of the jaws 126 are spaced a short distance radially outward of the main gripping elements 96, as shown in FIGS. 15 to 18 and 33.
A shoe 137 secured to the extreme end of each jaw 126 supports a slightly discontinuous annular array of shell shattering spikes 136 which project toward a similar annular array of spikes in the opposing jaw. Preferably, the shoe 135 on one jaw supports six spikes 136, and the shoe 137 on the other jaw supports seven spikes 136. The spikes 136 on eacn shoe 137 are evenly spaced from each other, except for the two spikes nearest the adjacent main clamping element 96, which have a spacing exceeding that between the other spikes.
The ends of the spikes 136 are pointed, and quite sharp. The spikes on each jaw are positioned in relation to the spikes on the opposing jaw so that the pointed ends of opposing spikes do not engage each other upon closing of the jaws. Preferably, the outer diameter of the annular array or series of spikes 136 on each jaw is approximately five-sixteenths of an inch.
The spikes 136 on the two opposing jaws 126 are positioned circumferentially with respect to the holder 6'4 to lie radially outward of the shrimp deflecting element 11 8 so that the major portion of the spikes 136 are located forwardly of the rear end of the deflector.
As will presently appear, the opposed spikes 136 are capable of shuttering an intervening section 135, FIGS. 35 and 39, of a shrimp shell 54 without severing the tail 58 from the main body of the shrimp, FIGS. 31:, 23 to 26 and 35. Thus, as will presently appear, the section 135 of a shrimp shell 54 impaled and shattered on opposite sides of the spikes 136 is broken up in a manner which provides for easy removal of the main portion of the shell from the meat 56, and from the tail 58, which is left intact and attached to the shrimp meat, as previously mentioned.
Clogging of the spaces between the shell shattering spikes 136 on each jaw 126 is positively precluded by the action of a spike clearing plunger 139 mounted with-- in the coacting support shoe 137 for reciprocation Within the space encircled by the associated series of spikes 136. Normally, the clearing plunger 139 projects outwardly substantially to the free ends of the adjacent spikes, as shown in FIG. 34. The opposite end of the plunger 139 projects through the rear of the shoe 137 where the plunger acts on a coiled compression spring 141 supported within a spring housing 143 supported on the structure of the coacting jaw 126.
Upon swinging of the jaws 126 toward each other, causing the spikes 136 to impale a shrimp shell, the plungers 139 are forced inwardly by engagement with the shrimp shell, as shown in FIG. 35. Upon subsequent retraction of the jaws 126, the plungers 139 are forced outwardly by the springs 141 to dislodge any shell structure which might otherwise be caught between the spikes. Consequently, the spikes will remain clean and unfouled to operate with maximum efiiciency for an unlimited period of time.
Main Rotor Assembly and Drive T herefor As previously mentioned, each of the six holding units 64 is supported by a pair of axially extending bosses 72 on a rotor 66', FIG. 18, which is journaled on a horizontal shaft 140 supported on upright members 142, 144 of the frame 67, FIGS. 4 and 10.
The rotor 66 is turned at a steady speed by a driving train which, as shown, comprises an electric motor 146, FIG. 6, belted to a main power shaft 148 which is connected by a belt 156 to a speed reducer 152, FIGS. 4 and 6. An output shaft 154 of the speed reducer 152, FIGS. 6 and 8, carries a driving pinion 156 which meshes with a bull gear 158 on the periphery of the rotor 66.
Synchronization of the working parts of the machine is maintained by driving its mechanisms in timed relation to rotary movement of the rotor 66.
As shown in FIG. 10, the rotor bosses 72 which support the holding units 64 project to the left in radially spaced relation to an opposed pair of cam discs 160, 162 fixed to the shaft 14% which journals the rotor. The opposed peripheral edges of the cam discs 160, 162 are formed to define the previously mentioned pairs of concentric annular cams fit 114 which actuate respectively the tail clamping jaws 8t and the main clamping jaws 2 of the respective holding units 64.
The cams 99 are mirror images of each other and are located radial-1y outward of the cams 1%, FIGS. 7 and 10, which are also formed as mirror images of each other.
8 The shaping of the cams 90, 114, which is significant here, is best illustrated with reference to FIG. 7.
With reference to FIG. 7, each holding unit 64 moves in a counter-clockwise direction with reference to the cams 9t and 114. Each cam 99 has a single axially raised portion 164, shown in section in FIG. 7, which extends in the direction of rotation of the holding unit 64 from a starting point located just ahead, circumferentially, of the shell separating station 52 to a trailing end terminating in alinement with the tail clamping station or zone 42.
Thus, as each holding unit 6 moves to the shell stripping station 52, the opposing raised portions 164 of the eams 9t move the cam followers 88 on the gripping unit toward each other to swing apart the tail gripping elements 84 to release the intact tail 58 of the shrimp, as will be presently referred to in greater detail. The raised cam portions 164 continue to hold the tail gripping elements 34 in spaced relation to each other as the gripping unit 64 progresses into alignment with the tail gripping station 42 where the raised cam elements 164- recede, allowing the spring 86 on the gripping unit to swing the gripping elements 84 into gripping relation to the tail of the shrimp supplied to the holding unit in a manner to be presently described. In this manner, the opening and closing of the tail clamping jaws 8d of each individual holding unit 64 is efiected automatically as an incident to rotation of the holding unit through its closed course, the tail clamping action being efiected at the tail clamping station 42 and released at the shell stripping station 52.
Each of the cams 114 includes an axially raised circumferential portion 166, FIG. 7, having a leading end located downwardly from the shell stripping station 52 with respect to the direction of rotation of the gripping units 64 to swing the cam followers 112 of each gripping unit 64 toward each other and release the shrimp shell 54 from the holding unit after it has progressed beyond the stripping station 52 to a shell discarding zone 168, FIG. 7.
The cam portions 166 continue in the direction of rotation of the holding units 64 into alinement with the main clamping zone 44 where the cam portions 166 recede to allow the spring 1% to close the main clamping elements 96 of the underbelly of a shrimp in a manner to be described presently in greater detail. In this manner, the main clamping jaws 92 of each holding unit 64 are also operated automatically as an incident to turning of the rotor 66.
Provision is made for adjusting the positions along the rotary path of the gripping units 64 at which the automatic operation of the clamping jaws is eifected. For this purpose, the cam discs 16%, 162 are adjusted rotatably by means of a radial adjusting arm 167, FIGS. 4 and 10, fixed to one end of the shaft 140, which is nonrotatably connected to the cam discs.
Shrimp Supply Conveyor A succession of shrimp 4? are fed to the tail clamping zone 4-2, FIG. 7, in timed relation to movement of the holding units 64 into the tail clamping zone, by the continuous conveyor 62, previously mentioned, which is driven in timed relation to the rotor 66.
As illustrated in FIGS. 1, 2 and 12, the conveyor 62 comprises a continuous chain belt 17%! trained around suitable sprockets 172 to have a horizontal run 174, FIG. 1, extending horizontally across 1e front of the machine from a shrimp loading station 176 in front of the machine, FIG. 12, to the feeding or tail clamping station 4-2.
The conveyor chain belt 1715 supports a series of trays 178 which are carried in a horizontal position by the horizontal belt run 174. The shrimps 4d are loaded into the successive trays 178 at the loading station 176 by 9 automatically tripped loading means 180, FIGS. 5, 12 and 13, to be described presently.
Each shrimp 49 is deposited in its supporting tray 176 so that the tail of the shrimp projects from an open end of the tray a predetermined degree toward the tail clamping or pick-up station #22, whereby upon movement of the to the tail clamping station the tail of the shrirnp will project outwardly and downwardly between the open tail clamping elements 84 of one of the holding units 64.
The means provided for indexing the conveyor 62 in timed relation to turning movement of the rotor 66 comprises a six-pointed star or indexing wheel 182, FIGS. 4 and 10, mounted on the rotor 66 inwardly of the bull gear 153 by adjusting means which provides for limited rotary adjustment of wheel 132 relative to the rotor. A peripheral flange on the wheel 132 forms six generally radial ledges 184, FIG. 4; extending to six adjacent points 186 evenly spaced from each other around the axis of the wheel.
The star wheel ledges 1554 move successively into enga'gement with a follower formed by a lug 18$, F265. 4 and 10, projecting hor zontally from a vertical sleeve 19% carrying a vertical rack 192 and supported by a vertical plunger i94- slidably mounted on the frame element 144; The plunger 1% and rack 192 are urged downwardly by spring 1 36.
As the star wheel 1S2 rotates counter-clockwise with reference to FIG; 4, each successive ledge surface 134 engages the follower 1S3, lilting it to an extreme vertical position at which it passes over the adjacent star wheel point 3.56, allowing the spring 196 to move the rack 192 and follower 183 back down to a lower position where the follower is en aged by the next successive star wheel ledge;
The rack 5.92 meshes with a pinion 193, FIGS. 4, 20 and 21, which is oscillated by reciprocation of the rack.
Oscillation of the pinion 1% is transformed into indexing movement on the conveyor 62 by the ratchet drive; shown in FIGS. 4, 20 and 21, and comprising two ratchet pawls mounted for rotation with the pinion 1'33 and biased axially into engagement with a circular ratchet element defining six cir'cumferentially spaced arcuate detent groo es or notches id e. The notches 2M are adapted to receive and coact with the pawls Zilll to index the element 2132 rotatably in only one direction as an incident to oscillation of the pinion l98.
The driven element 21H. is integral with one of the sprocket wheels 172, which carries and drives the conveyor chain belt 17%.
The arrangement of the parts is such that the conveyor driving element 282 is advanced by the spring biased downward movement of the tech 192, which proceeds quickly in relation to the rotary speed of the star wheel 322. During the time required for the next ledge 184 to lift the rack i 2 back to its extreme vertical position, the conveyor 62 remains immovable in its indexed position providing a ti e delay during which the shrimp 41} supported by the conveyor in flinement with the tail clamping station 42 can be clamped by the tail by a holding unit 64, as described.
Conveyor Loader Eficient loading of shrimp 4% into the conveyor 62 is provided by the previously mentioned loading structure 180 which is adjustable to vary the length of the tail 58 that is left intact on the cleaned body of each shrimp.
As shown in FIGS. 1 and 2, shrimps are supplied from a hopper 2% above the machine onto a downwardly and forwardly inclined pick-up board 237 where an attendant for the machine picks up the shrimps and places them in the loading structure 189, which is automatically tripped in timed relation to movement of the conveyor 62.
The loading structure 188 comprises a battery of six parallel loading trays 2.68, FIGS. 1, 3, 5 and 12, overlying the horizontal run of conveyor trays 17 8 in parallel rela- 1% tion to the conveyor trays and extending rearwardly of the conveyor trays, as shown in BIG. 5.
The work of the attendant is limited to the simple operation of picking up the shrimps 49 from the supply board 2%! and placing the shrimps in the loading trays Ztlfi so that the tails on the shrimp extend rea'rwardly into engagement with a series of stops 210 at the rear ends of the trays 2G8, FIGS. 13 and 14.
Each loading tray 208 is formed by a pair of longitudinal side plates 212, FIGS. l2, l3, and 14 mounted on a pair of rotary support shafts 214 journaled on a genorally horizontal frame 216. Operating gears 21% fixed to the respective shafts 214 are interconnected with a horizontal actuating rack 220, FIGS. 10 and 12, in such fashion that horizontal movement of the rack 222? between two extreme positions swings each pair of loading tray plates 212 between the normal positions shown in PEG. 12, in which the plates 212 converge downwardly toward each other to form a loading tray 2%, and a conveyor loading or shrimp depositing position in which the pairs of plates 212 are swung apart into parallel relation to each other to deposit the shrimp 4% previously loaded into the loading trays 2% into six conveyor trays 178 underlying the respective loading trays.
The rack 226 is moved horizontally into shrimp depositing position and back to normal position in timed relation to rotation of the rotor 66 through successive and complete turns.
As shown in FIGS. 10 and 12, a gear element 222 connects the horizontal rack 226 with a vertical rack 224 which is urged downwardly by a spring 226. An actuating lug 228, FIG. 10, on the rack 224 projects horizontally into the path of a single actuator 230 carried by the rotor 66 and extending across the cam discs lot), 162 as shown in FIG. 10. Once during each revolution of the rotor 66, the actuator 2353 engages the follower 22%; and lifts the rack 224 temporarily to a raised position for depositing six shrimp in the conveyor 62, as described.
The previously mentioned adjustable stops Ell? at the rear of the loading trays 268 are supported on a slide 232, FIGS. 13 and 14, mounted on the frame 216 for adjustmerit longitudinally with respect to the loading trays. As mentioned, the loading trays 2% project rearwardly of the underlying conveyor trays 1'78 so that tails of the shrimp deposited in the conveyor trays project rearwardly and downwardly from the rear ends of the latter. The longitudinal position of the shrimps $0 in the loading trays 2&8 and, hence, the extent to which the shrimp tails project rearwardly from the conveyor trays 178 is determined by adjustment of the stops Elli, as explained.
Structure and Operation of the Tail Clamping arid Body Clamping Stations The functions performed at the tail clarnping station 42 have been referred to in considerable detail. The tail clamping elements 84 move into this station in spaced relation to each other by virtue of the action of the raised cam portions 164, FIG. 7. The tail 58 of the shrimp 4%) esting in a conveyor tray 173 alined with the tail clamping station extends down between the tail clamping elements 84, FlG. 7, to rest on the part 124, FIG. 16, where the tail is clamped by movement of the elements 84 toward each other as the cam followers 68 move oil the raised cam portions 164. As a gripping unit 64 moves on to the body clamping station 44, the raised cam portions 114 continue tohold the body clamping elements E6 spaced apart so that the underbelly of the shrimp lil can rest on the curved floor surface 78 of the gripping unit. Two grooved pressure rollers 24%, 242 supported at the body clamping station 44 by resilient supports 244, 246, FlGS. 3, 5 and 7, engage the back of each shrimp dll as it moves into the body clamping station 44- to force the underbelly of the shrimp down against the floor surface 78, as shown in FIG. 3a.
Transverse alinement of each shrimp 46 with the open space between the main clamping elements 96 is assured as each shrimp goes into the body clamping station by a pair of resilient alining blades 248 mounted on a support 260, as shown in FIGS. and 7, to engage opposite sides of the shrimp as it moves between the tail clamping station and the body clamping station.
At the body clamping station 44, the cam followers 112 move off the raised cam portions 114, allowing the main clamp elements 96 to firmly grip the underside of the shrimp shell 54, as shown in FIG. 3a, a positive grip on the shell being assured by previously mentioned spikes 182 and 166, FIG. 19.
Structure and Operation of Shell Shattering Station Immediately beyond the body clamping station 44, the resilient cam followers 132 on the shell shattering jaws 126, FIG. 17, pass through a constriction formed by the Structure and Operation of Shell Ripping and Deveining Station At the shell ripping and deveining station 48, the shrimp shell 54 is longitudinally ripped open along the back of the shrimp and the sand vein removed by a rotary ripping disc 254, FIGS. 7, 23, 24 and 27, defining a circumferential series of shell ripping and deveining teeth 256, FIG. 23, pitched in the direction of rotation of the ripping disc. As indicated by the arrow 258 in FIG. 23, the ripper 254 rotates in the clockwise direction with reference to FIGS. 3 and 23, moving the teeth 256 relative to a shrimp 48 toward the tail 58 of the shrimp which is left intact.
An arcuate guard. 260 mounted on opposite sides of the ripping disc 254 radially inward of the teeth 256 serves to limit the depth of cut of the ripper into the meat of shrimp in removing the sand vein..
The ripper disc 254 is powered and operated in a manner which lifts the ripper over the tail 58 of each shrimp to engage the shrimp body ahead of the tail.
For this purpose, the ripper disc 254 is mounted on a shaft 262, FIGS. 6, 7 and 27, journaled in a sleeve 264 supported by the projecting end of an arm 266 swingably mounted, as shown in FIGS. 6 and 22, on the main power shaft 148 previously mentioned. A pulley wheel 268 on the shaft 148 is connected by a belt 270, FIG. 6, to a pulley 72 which drives the shell ripper shaft 262. The arm 266 is biased to swing the ripper disc 254 toward a shrimp in the ripping station 48 by an outboard weight 274 mounted on the arm 266, as shown in FIGS. 7, 22 and 27. I
As the tall 58 of the shrimp 40 approaches the shell ripping disc 254, the ripping disc is moved radially outward from its normal position to clear the shrimp tail, as shown in FIG. 23, by automatic control means operated by rotation of the rotor 66. Thus, as shown in FIGS. 22 and 27, a cam follower 276 mounted on the swingable arm 266 extends into engagement with a suitable cam 278 pivotally mounted on a frame member 280 and serving as a means for adjusting the normal position of the ripping disc radially with respect to the path of shrimp 40 carried by the holding units 64. The arm supported follower 276 tends to urge the cam 278 counterclockwise about its support pivot 282 to engage the cam with an adjustable limit stop 284 which determines the normal position of the ripping disc.
A series of six oircurnferentially spaced cam actuating bars 286, fixed to and projecting axially from the frames 68 of the respective gripping units 64, are moved successively into engagement with the projecting end of the cam 278, as shown in FIG. 27, in timed relation to movement of the successive shrimp tails 58 into alignment with the ripper 254 to swing the cam 278 and the arm 266 clockwise to move the ripper 254 radially outward to clear the shrimp tails, as described. As each bar 286 clears the cam 278, the cam releases the ripper 254 to swing into its normal position to rip open the shrimp shell and dig out the sand vein, as illustrated in FIG. 24.
Each shrimp 40 is laterally centered with respect to the ripping disc 254 as it moves into the disc by a pair of converging guiding blades 287 mounted on support structure 289, FIGS. 7 and 22, to engage opposite sides of the shrimp.
The spinal area of a shrimp 40 is flushed by a jet of water played by a nozzle 290 into the back of each shrimp as it emerges from the station 48, FIG. 7.
Structure and Operation of the Shrimp Cleaning and Slitting Station At the station 50, each shrimp 40 is thoroughly cleaned to assure complete removal of debris from the area of the situs of the sand vein. Moreover, each shrimp being cleaned in this station is optionally slit open longitudinally to a depth far below the situs of the sand vein to form a cleaned butterfly shrimp.
Upon entering the station 50, each shrimp 40 is engaged along its dorsal side by a pressure spreading roller 291. The roller presses firmly against the exposed flesh of the shrimp to spread apart the body portions located on opposite sides of the longitudinal area from which the sand vein is dug out in the station 48. The structure which supports and operates the pressure roller 291 in timed relation to rotation of the rotor '66 will be described presently.
Each shrimp 40, spread open by the pressure roller 291, moves immediately into coacting relation to a debris removing rake 293, FIGS. 7, and 36 to 38.
The rake 293 is formed by a plurality of thin, general ly horizontal blades 295 swingably supported on a common pivot 297. The pivot 297 is located between the centers of gravity of the blades 295 and the shrimp engaging ends of the blades, so that the blades are biased in counterclockwise directions with respect to FIGS. 7 and 36 by the weight of the blades. The ends of the blades 295 remote from the passing shrimp are normally supported by a stop arm 299 projecting from adjacent structure of the frame 67.
At the common pivot 297, the blades 295 are spaced from each other by intervening washers 301 in a manner such that the blades are held apart throughout substantially their entire length to avoid frictional engagement of the blades with each other. This leaves the individual blades free to tip in a clockwise direction, FIG. 36, upon engagement with a passing shrimp 40.
All the blades 295 converge toward each other in the direction of a passing shrimp 49, so that the ends of the blades which engage the shrimp are substantially touchmg.
In this instance, a total of six raking blades 295 are used. The combined thickness of all the blades at the shrimp end of the blades is suflicient to assure spanning of the longitudinal area of a passing shrimp from which the sand vein has been dug out in the station 48.
Upon coming in contact with the blades 295, the shrimp is still spread open from its having been engaged by the pressure roller 291. The flesh of the shrimp engages the individual blades 295, causing the blades to tip in a clockwise direction to avoid gouging of the shrimp flesh. At the same time, the biasing action of gravity on the blades holds them in engagement with the shrimp with sufficient pressure to eifectively rake away any debris left from the previous sand vein removing operation. If desired, a jet of cleansing water can be caused to play upon each shrimp as it moves past the rake 293.
The pressure spreading roller 291 is formed in two separable half-sections. In those instances in which it is desired to slit open the shrimp to form butterfly shrimp, as described, a shrimp slitting disk or blade 2% is inserted

Claims (1)

1. A SHRIMP CLEANING MACHINE COMPRISING, IN COMBINATION, ROTOR MEANS MOUNTING AN ANNULAR SERIES OF GRIPPING UNITS FOR MOVEMENT THROUGH A CIRCULAR PATH, MEANS FOR SUPPLYING SHRIMP TAIL FIRST TO A PICKUP STATION ADJACENT SAID PATH, EACH OF SAID GRIPPING UNITS INCLUDING SHRIMP GRIPPING ELEMENTS, MEANS FOR OPERATING SAID GRIPPING ELEMENTS OF EACH UNIT TO PICK UP AND GRIP A SHRIMP AS AN INCIDENT TO MOVEMENT OF THE UNIT PAST SAID PICKUP STATION, EACH GRIPPING UNIT INCLUDING MEANS FOR SHATTERING THE SHELL OF A GRIPPED SHRIMP JUST AHEAD OF THE TAIL OF THE SHRIMP, A SHELL RIPPING AND DEVEINING ELEMENT LOCATED ADJACENT SAID PATH, MEANS FOR SHIFTING THE POSITION OF SAID RIPPING AND DEVEINING ELEMENT IN TIMED RELATION TO MOVEMENT OF SAID UNITS THEREBY TO BYPASS THE TAILS AND ENGAGE THE DORSAL SIDES OF SHRIMP CARRIED BY THE SUCCESSIVE GRIPPING UNITS, A SHRIMP SLITTING ELEMENT POSITIONED ADJACENT THE PATH OF SAID GRIPPING UNITS, MEANS FOR SHIFTING SAID SLITTING ELEMENT IN TIMED RELATION TO MOVEMENT OF SAID UNITS THEREBY TO BYPASS THE TAILS AND ENGAGE AND LONGITUDINALLY SLIT THE MAIN BODIES OF THE SHRIMP CARRIED BY THE SUCCESSIVE GRIPPING UNITS, SHRIMP BODY IMPALING MEANS MOUNTED ADJACENT SAID PATH FOR IMPALING AND STOPPING ROTARY MOVEMENT OF THE BODIES OF THE SHRIMP CARRIED BY SAID SUCCESSIVE GRIPPING UNITS, AND EACH GRIPPING UNIT INCLUDING A SHRIMP TAIL DEFLECTING ELEMENT THEREON ARRANGED TO DEFLECT THE TAIL OF A SUPPORTED SHRIMP RADIALLY OUTWARD AS AN INCIDENT TO TERMINATION OF ROTARY MOVEMENT OF THE BODY OF THE SHRIMP BY SAID IMPALING MEANS.
US41304A 1960-07-07 1960-07-07 Machine for cleaning shrimp Expired - Lifetime US3122777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US41304A US3122777A (en) 1960-07-07 1960-07-07 Machine for cleaning shrimp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41304A US3122777A (en) 1960-07-07 1960-07-07 Machine for cleaning shrimp
US258095A US3159871A (en) 1960-07-07 1963-01-18 Method for cleaning shrimp

Publications (1)

Publication Number Publication Date
US3122777A true US3122777A (en) 1964-03-03

Family

ID=21915833

Family Applications (1)

Application Number Title Priority Date Filing Date
US41304A Expired - Lifetime US3122777A (en) 1960-07-07 1960-07-07 Machine for cleaning shrimp

Country Status (1)

Country Link
US (1) US3122777A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247542A (en) * 1964-02-07 1966-04-26 Jonsson Gregor Machine for cleaning shrimp
US3310832A (en) * 1964-12-17 1967-03-28 Seafoods Automation Corp Apparatus for processing shrimp
US3380112A (en) * 1965-10-14 1968-04-30 James S. Cox Shrimp butchering apparatus
US3600744A (en) * 1968-03-14 1971-08-24 Bedrijven Maschf B & S Method for shelling shrimps
US3867740A (en) * 1973-01-24 1975-02-25 Harry H Bell & Sons Inc Method and apparatus for processing shrimp
US3952371A (en) * 1973-01-24 1976-04-27 Lapine Robert L Method and apparatus for processing shrimp
US4472858A (en) * 1982-07-29 1984-09-25 Gregor Jonsson Associates, Inc. Guide and cutter depth control apparatus
DK153037B (en) * 1972-02-23 1988-06-13 Alwin Kocken MACHINE FOR SHELLING SHAIRS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716776A (en) * 1952-01-11 1955-09-06 Tait Clark Streich Machinery C Shrimp processing apparatus
US2784450A (en) * 1953-03-23 1957-03-12 Jonsson Gregor Method of cleaning shrimp
US2850761A (en) * 1953-03-23 1958-09-09 Jonsson Gregor Shrimp cleaning machine
US2884657A (en) * 1956-07-27 1959-05-05 Miller Nikoli Shrimp processing machine
US2955317A (en) * 1957-07-19 1960-10-11 Wallace N Merrick Methods of deheading shrimp
US2974356A (en) * 1957-06-04 1961-03-14 Alpha Shrimp Machine Corp Clamp for fantail shrimp deveining and deshelling apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716776A (en) * 1952-01-11 1955-09-06 Tait Clark Streich Machinery C Shrimp processing apparatus
US2784450A (en) * 1953-03-23 1957-03-12 Jonsson Gregor Method of cleaning shrimp
US2850761A (en) * 1953-03-23 1958-09-09 Jonsson Gregor Shrimp cleaning machine
US2884657A (en) * 1956-07-27 1959-05-05 Miller Nikoli Shrimp processing machine
US2974356A (en) * 1957-06-04 1961-03-14 Alpha Shrimp Machine Corp Clamp for fantail shrimp deveining and deshelling apparatus
US2955317A (en) * 1957-07-19 1960-10-11 Wallace N Merrick Methods of deheading shrimp

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247542A (en) * 1964-02-07 1966-04-26 Jonsson Gregor Machine for cleaning shrimp
US3310832A (en) * 1964-12-17 1967-03-28 Seafoods Automation Corp Apparatus for processing shrimp
US3380112A (en) * 1965-10-14 1968-04-30 James S. Cox Shrimp butchering apparatus
US3600744A (en) * 1968-03-14 1971-08-24 Bedrijven Maschf B & S Method for shelling shrimps
US3691591A (en) * 1968-03-14 1972-09-19 Hendrikus Gerhardus Muller Apparatus for shelling shrimps
DK153037B (en) * 1972-02-23 1988-06-13 Alwin Kocken MACHINE FOR SHELLING SHAIRS
US3867740A (en) * 1973-01-24 1975-02-25 Harry H Bell & Sons Inc Method and apparatus for processing shrimp
US3952371A (en) * 1973-01-24 1976-04-27 Lapine Robert L Method and apparatus for processing shrimp
US4472858A (en) * 1982-07-29 1984-09-25 Gregor Jonsson Associates, Inc. Guide and cutter depth control apparatus

Similar Documents

Publication Publication Date Title
US4567624A (en) Device for removing pieces of meat from breast of slaughtered poultry
US3566437A (en) Shrimp processing machine and method
US3122777A (en) Machine for cleaning shrimp
US2784450A (en) Method of cleaning shrimp
US4503586A (en) Apparatus and method for processing crabs
US3159871A (en) Method for cleaning shrimp
US2850761A (en) Shrimp cleaning machine
US4008508A (en) Method and apparatus for processing shrimp and the like
US3495293A (en) Machine for preparing a hard shell crab for meat removal
US4073041A (en) Crab butchering machine
US3751766A (en) Shrimp processing machine and method
US3075634A (en) Machine for handling artichokes
US2301729A (en) Shrimp veining machine
US2731051A (en) Machines for orientating and stemming fruit with stems
US4715093A (en) Trimming and cutting apparatus for the preparation of crabs for meat extraction
US3380234A (en) Lettuce harvester
US3469278A (en) Fish beheading and cleaning machine
US3277517A (en) Method of cleaning shrimp
US4084293A (en) Fish-beheading machine and process
US3816876A (en) Fish processing machine
US4633547A (en) Crab picking machine
US3488799A (en) Fish head severing and entrail removing machine
US1571169A (en) Decapitating, cutting, and cleaning machine
US3075236A (en) Apparatus for processing kidney knobs
US2238247A (en) Beet harvesting and topping machine
zolimmachinery